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Abstract. We propose an equilibrium selection theory for Granovetter (1978)’s
threshold adoption model on networks. In the model, each agent adopts a new be-
havior only if the fraction of her neighbors doing the same is larger than her i.i.d.
threshold. A fuzzy convention x is a profile where, for (almost) all agents, approxi-
mately x fraction of their neighbors adopts a new behavior. A random-utility (RU)
dominant outcome x∗ is a maximizer of an integral of the distribution of thresholds.
The definition generalizes Harsanyi and Selten (1988)’s risk dominance to coordina-
tion games with random utility. We show that each network, if the number of agents
is large and each agent has sufficiently many neighbors, has a fuzzy convention x∗.
On some networks, including a city network, all equilibria are fuzzy conventions x∗.
Fuzzy convention x∗ is the only profile with such properties, and the only profile
robust to incomplete information about the network structure.

1. Introduction

In many social situations, people’s behavior is chosen due to a combination of indi-
vidual and social factors. An important recent example is the post-Covid-era mask-
wearing: some people wear masks to protect themselves or others, others don’t wear
them because of inconvenience or personal beliefs, and many, including the author of
this study, are affected by how many people around them wear masks. The latter
reason is social and it turns mask-wearing into a game of coordination, with, possibly,
multiple equilibria. This paper proposes a theory of equilibrium choice that is based
on the distribution of individual tastes and the details of the network of interactions
among agents.
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A well-known model of such situations has been introduced in Granovetter (1978).
Each agent i has a threshold τi and the agent will adopt a new behavior (say, wear
a mask) if and only if more than fraction τi of the population adopts it as well. A
threshold below 0 (or, above 1) means the agent always (never) wears a mask. The
distribution of thresholds, or tastes, in the population is given by function P , where
P (x) is the fraction of the population with a threshold equal to or smaller than x.
The top row of Figure 1 contains two examples of threshold distributions. In both
cases, 30% of the population always wear masks, and another 30% never wear masks.
Under P1, the remaining 40% wear masks only if at least 0.55 of their neighbors wear
masks. Under P2, the remaining 40% wear masks only if at least 0.4 of their neighbors
do the same. Granovetter (1978) characterized equilibria of this model as intersections
with the 45◦-line. In both cases, there are two stable equilibria: A with 0.3 and B

with 0.7 fractions wearing masks. (In each case, there is also an unstable equilibrium
in-between.) In order to explain why one or the other equilibrium may be realized, one
must refer to outside-of-the-model factors, like a local history, expectations, sunspots,
etc.

Following the seminal work of Granovetter (1978), a large literature generalizes Gra-
novetter’s model to networks. In the model, each agent is a single node on a network
and wears a mask (i.e., adopts the new behavior) only if the fraction of her neighbors
doing the same is larger than her threshold. Most papers, like Watts (2002), Jackson
and Yariv (2007), or López-Pintado (2008) (among many others) study Granovetter’s
model on a random graph with heterogeneous degree distribution. One of the key ob-
servations is that the degree distribution affects the equilibrium behavior. At the same
time, random graph-based models have limitations: they do not capture many impor-
tant aspects of real-world networks, like clustering, or overlapping neighborhoods. The
latter are well-known to play an important role in coordination and contagion-type
phenomena (Ellison (1993), Blume (1995), orMorris (2000)).

This paper combines Granovetter’s model with insights from the contagion liter-
ature. Consider two examples of networks. In a “city” network, people located on
a two-dimensional grid interact with their nearest neighbors. The neighborhood sets
overlap among neighbors. In the random graph (Erdős and Rényi (1959)), neighbors
are randomly selected from the population. For each network and each realization of
thresholds, we compute the average behavior in the lowest (least mask-wearing) and
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Figure 1. Monte-Carlo derived frequencies of the average behavior in
the lowest (blue, “\” hatch) and highest (yellow, “/” hatch) equilibria
for two different networks, city and random graph, and two threshold
distributions. Both graphs have 60,000 agents and each agent has 120
neighbors.

the highest equilibria. By taking many realizations of individual thresholds, we com-
pute the distribution of the sets of equilibrium average behavior for each network, and
then compare the distributions across networks.

The two bottom rows of Figure 1 show the distribution of the lowest and highest
average equilibrium behaviors for the two threshold distributions from the top row.
A few patterns emerge. Not surprisingly, the lowest and the highest equilibria in
the random graph correspond to the lowest (A) and highest (B) equilibria from the
population model of Granovetter (1978), regardless of the threshold distribution. On
the city network, the range of equilibrium behaviors is smaller and it depends on a
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Figure 2. The average neighborhood behavior in a fuzzy convention
(left panel) and in a not-fuzzy-convention-type (right panel) equilibrium
on a city network with 160,000 agents and each agent has 120 neighbors.
The shade of each pixel represents the fraction of neighbors wearing
masks, with blue (red) shade corresponding to fractions below (above)
0.5.

threshold distribution: Under P1, the lowest and the majority of realizations of the
highest equilibria are concentrated around the continuum equilibrium A. Under P2,
the average behavior in the highest and lowest equilibria is equal to the behavior in
the continuum equilibrium B.

Additional insight comes from a closer examination of the equilibria. For each equi-
librium, we compute the average neighborhood behavior, i.e., the share of neighbors
who wear masks in the neighborhood. The left panel shows a typical average neigh-
borhood behavior in the highest equilibrium under P1 on the city network. Almost all
agents face roughly the same fraction of neighbors who wear masks. We refer to such
an equilibrium as a fuzzy convention. In a fuzzy convention, there is considerable be-
havior heterogeneity on the micro, but on not the macro scale. The right panel shows
an equilibrium that is not a fuzzy convention: there is visible macro-level heterogeneity,
with mask-wearing more prevalent in some areas than others.
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We have two results to explain the observed patterns. Define a random utility-
dominant, or RU-dominant, outcome x∗ as a solution to the maximization problem1

x∗ ∈ arg max
x

xˆ

0

(
y − P−1 (y)

)
dy. (1)

The RU-dominant outcome depends on the threshold distribution. On Figure 1, the
RU-dominant outcomes are denoted in bold font: it is A for distribution P1 and B for
P2. If the threshold distribution is concentrated on a single outcome (i.e., all agents’
preferences are identical), then the RU-dominant outcome is equivalent to the risk-
dominant outcome (Harsanyi and Selten (1988)) of a 2× 2 coordination game.

The first result applies to all networks in which each agent has sufficiently many
neighbors or, in short, to all sufficiently fine networks. We show that, for almost all
realizations of taste thresholds, any such network has an equilibrium that is a fuzzy
convention x∗, i.e., where the average neighborhood behavior is (roughly) equal to x∗.
The proof relies on the characterization of Granovetter’s model as a potential game.
Such games are introduced in Monderer and Shapley (1996), where it is shown that
any profile that is a local maximizer of the potential function is an equilibrium of
the underlying game. In the proof, we show that, regardless of the structure of the
network, the global maximizer of the potential function is a fuzzy convention x∗with a
probability close to 1 (i.e., for almost all realizations of thresholds).

The above result does not preclude an existence of non-fuzzy-convention equilibria
for general networks. A proper understanding of whether there are other non-fuzzy
equilibria on fine networks, and what happens when neighborhood size is not large
enough goes beyond this paper and it is left for future research.

At the same time, the second result shows that, on some networks, including the
sufficiently large city network, all equilibria are fuzzy conventions x∗. Not only is non-
fuzzy-convention behavior not an equilibrium, but all equilibria also look very similar.
In the proof we show that, for each profile with an average behavior that is not a
fuzzy convention, contagion-like best response dynamics would bring the neighborhood
average behavior close to x∗. The proof uses an idea from Blume (1995) to show that
a contagion wave spreads across lattice networks. The form of the relevant contagion

1Although our derivation is independent, (1) is equivalent to a formula from Morris and Shin (2006),
where it is derived as a potential function for the continuum population version of the model.
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wave adapted for RU-dominance is more complicated. We do not have an explicit
construction and rely on an existence argument instead. Another complication is due
to the random preferences. We first work with an approximate toy model, where
each agent is replaced by a continuum population. This is additionally supplemented
with explicit calculations of (a) the likelihood that a favorable configuration of payoff
shocks may initiate a contagion wave, and (b) the likelihood that such a wave would
not be stopped by an unfavorable configuration of payoff shocks (similar calculations
are studied in percolation theory). The latter is a reason why the 1-dimensional “line”
network of Ellison (1993) is not a good example for the result and a 2-dimensional
“city” network is needed.

The two results together show that the single-element set {x∗} is a tight lower bound
on all sets of equilibrium average behaviors across all sufficiently fine networks. This
leads to an equilibrium selection theory: x∗ is the only average behavior that is robust
to changes in the underlying network or incomplete information about the network.

The two results of this paper apply to networks where each agent has a large neigh-
borhood. We choose this assumption for both methodological and practical reasons.
First, we want to move one step away from Granovetter (1978), which studies equilib-
ria on a continuum population. The characterization of average equilibrium on such
networks is straightforward, and it relies on a continuum version of the law of large
numbers. Our assumptions allow us to keep the power of the law of large numbers
as much as possible, while testing how the characterization of Granovetter (1978) is
affected by the network structure. As our second result shows, the network structure
may eliminate some of the continuum population equilibria. Contrary to Granovetter
(1978), our results allow for sparse networks, where the number of connections is sig-
nificantly smaller than the size of the population. Second, many important networks
have a large number of connections. Some are reasonably well approximated by the
city network that is the object of the first result. Although our results are asymptotic
(the exact bounds on the “fineness” of the networks can be derived from the proofs,
but the proofs are not optimized for this goal), the simulations reported in Figure 1
suggest that natural parameters generate patterns that are consistent with our results.

1.1. Literature review. Coordination games form one of three main approaches in
the literature that studies games on networks (Jackson and Zenou (2015)). The results
of this paper are closely related to the literature on contagion in networks. Ellison
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(1993) (see also Ellison (2000)) is the first to show that a risk-dominant action can
spread from a small initial set of deviators to an entire 1-dimensional lattice network
by a simple best response process. Blume (1995) and Lee and Valentinyi (2000) show
that a risk-dominant outcome will spread to the entire 2-dimensional lattice if it is
large and there is sufficient randomness in the initial configuration. Notice that the
second requirement is satisfied in our case if the threshold distribution admits a non-
zero probability for players with strictly dominant actions. Morris (2000) describes
general properties of networks for which Ellison’s contagion wave exists. Morris (2000)
also shows that risk-dominated actions cannot spread through a best response process
regardless of the geometry of the network.

Jackson and Yariv (2007) analyzes a Bayesian equilibrium, where the agents choose
their action without knowing the thresholds of their neighbors (a similar approach to
observability is taken, for instance in Galeotti et al. (2010)). This assumption improves
model’s tractability as agent’s behavior does not depend on individual thresholds of
her neighbors. At the same time, this assumption is not satisfactory if the equilibrium
is to be interpreted as a long-term process as each agent may change her behavior when
they observe the actions of their neighbors. This is different from our model, where
an equilibrium is a steady state behavior after the thresholds are realized and actions
are chosen. Because the neighbors in the Bayesian equilibrium of Jackson and Yariv
(2007) are selected at random, the neighborhood structure looks like a random graph.
For similar reasons to those discussed above (see Fig. 1), there are typically multiple
equilibria.

Another literature studies evolutionary equilibrium selection in games with heteroge-
neous populations. For instance, Friedman (1991) describes a general framework with
multiple continuum populations choosing actions and receiving payoffs and studies evo-
lutionary steady states of continuous time adjustment dynamics. More closely related
to this paper is Neary (2012), which studies a similar model to us but with two payoff
shocks (more precisely, two subpopulations of deterministic size) and agents located
on a complete graph. The paper presents conditions under which the evolutionary
dynamics of Kandori et al. (1993) selects a fuzzy convention, i.e., an equilibrium where
members of different subpopulations play different actions. Neary and Newton (2017)
studies general payoff shocks and presents a sufficient condition under which the logit
dynamics of Blume (1993) selects a fuzzy convention.
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Evolutionary game theory (Kandori et al. (1993), Young (1993), Blume (1993), New-
ton (2021), and many others) studies the long-run behavior of perturbed best response
processes, where players commit mistakes with a small probability, and instead of
choosing a best response, take some other action. One of the key results of this liter-
ature is that risk-dominant coordination is (uniquely) stochastically stable regardless
of the underlying network (Peski (2010)). Our current results (specifically, Theorems
2 and 1) are closely related, but with some key differences. On the one hand, there
is a relation between “noise” in the behavioral rules of the evolutionary literature and
“noise” in the payoffs of the current paper. On the other hand, there are two important
differences: Here, we are interested in static equilibria instead of a dynamic adjustment
process, and our payoff shocks are permanent instead of temporary mistakes. (The best
response dynamic plays an important role in the proofs as a tool to identify equilibria.)
Finally, the evolutionary literature is subject to the criticism that one may need to wait
for a very long time before reaching a stochastically stable outcome (Ellison (1993)).
That criticism does not apply to our static model.

2. Model

2.1. Model. There are N agents i = 1, ..., N . The network is defined as an undirected
weighted graph with weights gij = gji ≥ 0 for i, j ≤ N . The weights represent a
frequency of interactions between two agents. We assume that gii = 0 and that gi =∑
j g > 0 for each player i. We also assume that none of the players has significantly

more connections than others, maxi,j gi/gi ≤ w∗ <∞. Each agent i has a threshold τi
drawn i.i.d. from probability distribution P . Each network g, and each realization of
thresholds τ leads to a many-player complete information static game G (g, τ).

Each agent chooses a binary action ai ∈ {0, 1}. Examples of such choices are mask-
wearing, planting a yard sign, mowing one’s lawn, etc. For each action profile a, define
a profile βa = (βai ) of average neighborhood fractions of agents who play action 1, i.e.,
βai = 1

gi

∑
j gijaj. An action profile is a Nash equilibrium if agents play action 1 (0) only

if the average action in their neighborhood is larger (smaller) than their threshold, i.e.,
ai = 1 (0)⇒ βai ≥ (≤) τi.

The model is equivalent to a wide class of random utility binary coordination games
on networks. The notion of equilibrium is a standard, static equilibrium of a com-
plete information model. Although it is convenient to assume that players know the
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thresholds and the network structure of the entire society, this assumption is neither
realistic nor necessary. For the interpretation of the equilibrium, it is sufficient that
agents observe the actions of their neighbors. Because ours is a coordination game,
we can safely think about an equilibrium as a steady state of myopic best response
adjustment process.

2.2. Fuzzy convention. For ε > 0 and x ∈ [0, 1], a profile a is ε-fuzzy convention x

if the fraction of agents who observe an average neighborhood behavior ε-away from x

is not larger than ε:
1
N
{i : |βai − x| ≥ ε} ≤ ε.

In a fuzzy convention, almost all agents experience approximately the same behavior
of their neighbors, regardless of possibly complicated topology of the network, or their
behavior thresholds.

2.3. RU-dominant outcome. An outcome x∗ ∈ [0, 1] is random utility (RU) domi-
nant if

x∗ ∈ arg max
x

xˆ

0

(
y − P−1 (y)

)
dy. (2)

(When P is not invertible, we define P−1 (y) = inf {(x : P (x) ≥ y)}.) It is strictly
RU-dominant, if it is the unique maximizer. The integral (2) is equal to the difference
in the areas below the cdf P (.) and the 45◦ line. To compute it, we add areas between
the two lines, such that the area below the 45◦ line and above P (.) is added with a
“−” sign and the area above the 45◦ line and below P (.) is added with the “+” sign.
The left panel of Fig. 3 illustrates such a calcuation for x = 1.

Generically, any maximizer of (2) is a stable fixed point of P (x) = x, and hence,
it is equal to the average behavior in the continuum version of Granovetter (1978).
However, even if the continuum model has multiple stable fixed points, generically,
there exists only a unique RU -dominant outcome.

The definition generalizes the risk-dominance of (Harsanyi and Selten (1988)) from
deterministic binary coordination games to games with heterogeneous payoffs. To see
that, suppose that P (.) is degenerate and concentrated on a single threshold τ (i.e.,
there is no uncertainty about thresholds). In such a case, our model is strategically
equivalent to a deterministic binary coordination game, where each agent’s best re-
sponse is 1 if and only if fraction τ of his neighbors choose 1 as well. Figure 3 shows
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Figure 3. RU- and risk-dominance when P is degenerate for τ = 0.4
(left panel) and τ = 0.6 (right panel).

the distribution P for two values of τ . In both cases, the integral from expression (2)

is equal to

−
1
2x

2 x ≤ τ

x− 1
2x

2 − τ x ≥ τ
and

• when τ = 0.4, it is maximized at x∗ = 1,
• when τ = 0.6, it is maximized at x∗ = 0.

In both cases, the RU-dominant outcome is identical to the risk-dominant one.
For future reference, note that any strictly RU-dominant outcome is also a unique

maximizer of

ν (x) = 1
2 (P (x))2 −

xˆ

0

ydP (y) . (3)

Indeed, the maximizer of (3) must satisfy P (x) = x, and a change of variables shows
that the two expressions are equal for such x.

3. RU-dominant fuzzy convention

Define a bound on the importance of a single player in another player’s neighborhood
as

d (g) = max
i,j

gij
gi
∈ [0, 1] .
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For d (g) to be small, each player must have many neighbors.

Theorem 1. Suppose that x∗ is the strictly RU-dominant outcome. For each η > 0,
there is d > 0 such that, for each network g st. d (g) ≤ d, with probability 1− η, there
is an equilibrium that is η-fuzzy convention x∗.

If the network is sufficiently fine, i.e. when d (g) is small, then, for almost all re-
alizations of thresholds, there is an equilibrium where almost all agents observe that
approximately fraction x∗ of their neighbors playing action 1.

The proof relies on the fact that Granovetter’s model is a potential game ( Monderer
and Shapley (1996)). For each action profile a and threshold profile τ , define

V (a; τ) = 1
2
∑
i,j

gijaiaj −
∑

giaiτi.

Then, V (ai, a−i; τ)−V (a′i, a−i; τ) = gi (βai − τi) (ai − a′i), which implies that V (1, a−i; τ)−
V (0, a−i; τ) ≥ 0 if and only if 1 is a best response for player i. In other words, V is a
potential function.

Monderer and Shapley (1996) shows that a profile is an equilibrium profile of a
potential game if and only if it is a local maximizer of a potential function. Additionally,
global maximizers of the potential function are equilibria selected by two different
equilibrium selection arguments: robustness to incomplete information (Ui (2001))
and stochastic stability under logistic dynamics (Blume (1993), Blume (2018)).

In the proof, we show that, if the network is sufficiently large and fine, for almost all
realizations of τ , any global maximizer of the potential function is a fuzzy convention x∗.
Apart from demonstrating Theorem 1, our argument also shows that fuzzy convention
x∗ survives the two aforementioned equilibrium selection criteria.

3.1. Concentration inequality. We sketch the main steps of the proof. We start
with a concentration inequality. Let F be the set of measurable functions f : [0, 1]2 →
[0, 1]. For each f ∈ F , each b, let E f (., b) =

´
f (x, b) dP (x) denote the expectation

of f (., b) with respect to the distribution of thresholds P . The Hoeffding inequality
implies that there exists constants B <∞ and cε > 0 such that for each profile a and
measurable function f (τ, β) ∈ [0, 1],

Prob
(∣∣∣∣∣∑

i

gif (τi, βai )−
∑
i

gi E f (., βai )
∣∣∣∣∣ ≥ ε

∑
gi

)
≤ Bexp (−cεN) . (4)
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Similarly, the Hanson-Wright inequality says that, for possibly different constants B
and cε,

Prob
∣∣∣∣∣∣
∑
i,j

gij

 ∏
k=i,j

f (τk, βak)
−∑

i,j

gij

 ∏
k=i,j

E f (., βak)
∣∣∣∣∣∣ ≥ ε

∑
gi

 ≤ Bexp (−cεN) .

(5)
The above inequalities hold for each profile a separately. The next Lemma show that
they can be strengthened to hold uniformly across all profiles.

Lemma 1. There exist constants B <∞ and c (ε,K, d) for each ε > 0, K <∞, and
d > 0 such that lim infd→0 cε,K,d > 0 and such that if f ∈ F is a K-Lipschitz function,
then

Prob
(

sup
a

∣∣∣∣∣∑
i

gif (τi, βai )−
∑
i

gi E f (., β)
∣∣∣∣∣ ≥ ε

∑
gi

)

≤Bexp
(
−cε,K,d(g)N

)
,

Prob
sup

a

∣∣∣∣∣∣
∑
i,j

gij

 ∏
k=i,j

f (τk, βak)
−∑

i,j

gij

 ∏
k=i,j

E f (., βak)
∣∣∣∣∣∣ ≥ ε

∑
gi


≤Bexp

(
−cε,K,d(g)N

)
.

In the proof of the Lemma, the probability bounds are obtained as a product between
bounds (4) and (5) and an appropriate measure of the size of the set of neighborhood
profiles B = {βa : a is a profile}. The basic idea is contained in the following inequality
that holds for any function F (βa) of the profile of neighborhood average behavior βa

and the counting measure |.| of the size of set B:

Prob
(

sup
a
F (βa)

)
= Prob

(
sup
β∈B

F (β)
)

≤ |B| sup
β∈B

Prob (F (β)) = |B| sup
a

Prob (F (βa)) .

Because the counting measure is too large (|B| ∼ exp (2N)), the proof instead relies
on metric entropy in order to evaluate the “size” of B. We show the metric entropy of
B is of order exp (d (g)N). The use of metric entropy requires some modifications to
the above argument, including the restriction to Lipschitz functions f .
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3.2. Estimates of the potential function. We use Lemma 1 in two calculations
below. First, we find the potential of profile a∗:

a∗i = 1 {τi < x∗} . (6)

In profile a∗, each player chooses an action optimally assuming that they face fraction
x∗ of their opponents playing 1. It can be shown that, with a large probability, a∗ is a
fuzzy convention x, i.e., βai ≈ x∗. Note that E 1 {. < x∗} = P (x∗). Lemma 1 implies
the following estimate:

V (a∗; τ) = 1
2
∑
i,j

gijaiaj −
∑

giaiτi

= 1
2
∑
i,j

gij1 {τi < x∗}1 {τj < x∗} −
∑

gi1 {τi < x∗} τi

≈ 1
2
∑
i,j

gi (P (x∗))2 −
∑

gi

x∗ˆ

0

ydP (y) =
∑

giν (x∗) .

(Because 1 {. < x∗} is not Lipschitz, the Lemma is applied to a Lipschitz approximation
- the details are left for the Appendix).

Second, we estimate the potential for an arbitrary equilibrium profile. We show that,
unless the equilibrium is a fuzzy convention x∗, its potential is strictly smaller than
the one computed above. Indeed, take profile a such that ai = 1 (τi ≤ βai ) for each i.
Applying Lemma 1, we obtain

V (a; τ) = 1
2
∑
i,j

gijaiaj −
∑

giaiτi

= 1
2
∑
i,j

gi1 (τi ≤ βai ) 1
{
τj < βaj

}
−
∑

gi1 (τi ≤ βai ) τi

≈ 1
2
∑
i,j

gijP (βai )P
(
βaj
)
−
∑

gi

βaiˆ

0

ydP (y) .

Because 2P (βai )P
(
βaj
)
≤ P (βai )2 + P

(
βaj
)2
, the potential of a is not larger than

≤ 1
2
∑
i,j

gij (P (βai ))2 −
∑

gi

βaiˆ

0

ydP (y) =
∑
i

giν (βai ) .
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By the last remark in Section 2.3, unless βai = x∗, the above is strictly smaller than
the potential of a∗. In other words, unless a is fuzzy convention x∗, it cannot maximize
the potential.

4. RU-dominant selection

In the previous section, we showed that all sufficiently fine networks have equilibria
that are fuzzy conventions x∗. Here, we show that there are networks where, with a
large probability, all equilibria are fuzzy conventions x∗:

Theorem 2. Suppose that x∗ is the strictly RU-dominant outcome and that either
x∗ > 0 and P (0) > 0, or x∗ < 1 and P (1) < 1. For each η > 0, there is a network g
such that, with probability 1− η, each equilibrium is η-fuzzy convention x∗.

The network constructed in the proof is a version of the city network described in the
introduction. It is parameterized withM and m. There areM2 agents living on square[
0, M

m

]2
⊆ R2 at fractional points

(
k
m
, l
m

)
for k, l = 1, ...,M . Any two agents i and j are

connected, gij = 1, if the (Euclidean) distance between them is no larger than 1. To
avoid separately dealing with the border cases, we assume that all distance calculations
are done modM

m
, which transforms the square

[
0, M

m

]2
into a torus. We show that, if m

and M
m

are sufficiently large, then, for a large probability set of realizations, there is no
equilibrium such that the average neighborhood actions are significantly higher than
x∗ for a significant group of agents. Together with an identical argument for the other
side, this suffices to establish the theorem. Our argument extends to K-dimensional
lattices for any K ≥ 2, but not to K = 1.

If P (0) > 0, then, with positive probability, there are agents for whom action 1 is
strictly dominant and it is played in any equilibrium. Similarly, if P (1) < 1, then,
with a positive probability, there are agents for whom action 0 is strictly dominant.
The assumption on the distribution ensures that, on a large network, there will be a
group of agents who play one or the other action regardless of the behavior of their
neighbors. Such agents play the same role as the initial infectors in Morris (2000) or
the agents who make mistakes in evolutionary models like the one studied in Ellison
(1993).

4.1. Unique behavior on line. First, we explain how the maximization problem (2)
is connected to the (approximate) uniqueness of the equilibrium. For the intuition, we
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work with a toy version of the line network from Ellison (1993) that we describe now.
Suppose that agents are distributed uniformly along a line at discrete and equally
spaced locations. Each location contains a continuum population of mass 1. The
populations in locations i and j are connected with each other, with weights that
depend only on the distance gij = gi−j =: gj−i. We assume there are no connections
between agents in the same location, i.e., g0 = 0, and the weights are normalized so
that ∑ gd = 1. In this toy version of our model, the continuum assumption allows us
to use the law of large numbers to compute the average best response action of agents
in location i as P (∑d gdai+d), where aj is the average current action played by agents
in location j.

Suppose that, initially, the average action in locations i ≤ 0 is x∗ or below. We are
going to show that, if agents in other locations best respond, their average behavior
cannot be larger than x∗. For this, consider the largest profile of average actions such
that aj ≤ x∗ for j ≤ 0 and such that, in all locations i > 0, the behavior is not larger
than the best response:

ai ≤ P

(∑
d

gdai+d

)
.

Such largest profile exists due to the payoff complementarities. Clearly, ai ≥ x∗ for
each i, and ai = x∗ for i ≤ 0. Due to the payoff complementarities again, ai must be
increasing in i. Let a = limi→∞ ai and, by contradiction, suppose that a > x∗. Taking
the inverse, we obtain

P−1 (ai) ≤
∑
d

gdai+d = x∗ +
∑
j

 ∑
d≥j−i

gd

 (aj+1 − aj) ,

where the equality is due to a discrete version of the “integration by parts” formula
and the fact that ai ≥ x∗ for each i. After multiplying by ai+1 − ai ≥ 0, and summing
up across all locations i, we get

∑
i

(
P−1 (ai)− x∗

)
(ai+1 − ai) ≤

∑
i,j

 ∑
d≥j−i

gd

 (ai+1 − ai) (aj+1 − aj) . (7)

The left-hand side of the inequality is approximately equal to
´ a
x∗

(P−1 (y)− x∗) dy.
To compute the right-hand side, notice that we can switch the roles of i and j in
the summation without affecting its value. Together with the fact that ∑d≥j−i gd +
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d≥i−j gd = ∑

gd = 1, we get

∑
i,j

 ∑
d≥j−i

gd

 (ai+1 − ai) (aj+1 − aj)

=1
2

∑
i,j

 ∑
d≥j−i

gd +
∑
d≥i−j

gd

 (ai+1 − ai) (aj+1 − aj)


=1
2

∑
i,j

(ai+1 − ai) (aj+1 − aj)
 = 1

2 (a− x∗)2

=1
2 (a− x∗)2 =

aˆ

x∗

(y − x∗) dy.

Putting the two sides together, inequality (7) implies that
aˆ

x∗

(
y − P−1 (y)

)
dy ≥ 0.

If a > x∗, this contradicts the fact that x∗ is the unique maximizer of the integral on
the right-hand side. The contradiction shows that the only equilibrium behavior that is
consistent with the group of agents j ≤ 0 playing aj ≤ x∗(perhaps for non-equilibrium
reasons) is that all locations play no more than x∗.

One can think about the largest profile as an outcome of a best-response revision
process, where locations i > 0 start with average behavior a0

i = 1, and then, in each
period, revise it to the current best responses (Morris (2000)). In such a case, the
above observation shows that contagion spreads x∗across the entire line.

The same observation extends from the line to higher-dimensional lattices due to an
elegant argument from Blume (1995) (see also Lee and Valentinyi (2000) and Morris
(2000)). The idea is that if the initial group is sufficiently large, we can approximate
it using a set with a smooth (i.e., low curvature) boundary. Then, we can analyze the
spread of the contagion wave behavior in the direction that is normal to the boundary.
This trick turns the problem into a one-dimensional one, and the above argument
applies.

4.2. Obstacles. The continuum assumption used in the above argument ensures that
the average best response action of agents in a location is a deterministic (rather than
random) function of the average behavior in neighboring locations. At the same time,
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initial infectors

Line

initial infectors

Lattice

Figure 4. Obstacles to the contagion wave

the assumption ignores a positive probability of a contiguous group of “bad” agents
for whom 1 is the strictly dominant action. If sufficiently large, such a group of “bad”
agents will stop the best response revisions towards action 0 and block the contagion
wave (see the left panel of Figure 4).

One could try to compare the relative frequency of initial infectors necessary to start
the wave versus the sets of “bad” agents who may block it. Unfortunately, for some
P s, the latter are more frequent. As a result, the line network is not a good candidate
example for Theorem 2.

At the same time, the “bad” sets are intuitively less likely to block the contagion
wave on higher-dimensional lattices (see the right panel of Figure 4). The reason is
that to block the wave, the “bad” sets would have to be arranged to surround it. Even
if the number of “bad” sets is much larger than the number of initial infectors, the
probability of a bad arrangement can be quite small. This intuition is clarified in the
proof of Theorem 2.

5. Robustness of fuzzy conventions

The discussion after Theorem 1 shows that, for a large probability of threshold real-
izations, and for each sufficiently fine network, Granovetter’s game has an equilibrium
that is robust to incomplete information (Kajii and Morris (1997)): any perturbation
of the original coordination game obtained by adding a small probability that players’
payoffs are different, has a nearby equilibrium that is a fuzzy convention x∗.

We are going to show that, additionally, fuzzy convention x∗ equilibria are typically
robust to (possibly, large) uncertainty about the underlying network. In the next result,
a∗ is the profile defined in (6).
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Theorem 3. Suppose that P does not have an atom at x∗. For each δ > 0, there
is η > 0, and N0 < ∞ such that if N ≥ N0, there is a set Tδ ⊆ [0, 1]N of threshold
realizations such that Prob (Tδ) ≥ 1 − δ and, for each τ , if a is an η-fuzzy convention
x∗ equilibrium in game G (g, τ) for some network g, then 1

N
|{i : ai 6= a∗i }| ≤ δ.

To interpret the Theorem, notice that profile a∗ has a network-independent defini-
tion: each player is best responding as if fraction x∗ of its neighbors play x, regardless
of the structure of their neighborhoods and what their neighbors on the network are
actually doing. According to the Theorem, the behavior in such a profile is close to
any fuzzy convention x∗ equilibrium, regardless of the underlying network. Together
with Theorem 1, the above result shows that playing a∗ is close to an equilibrium for
a great majority of players, whatever is the true network of interactions, whether the
agents know the network or not.

Because Theorem 2 shows that fuzzy conventions x∗ are the only equilibria on some
networks, the results of this paper lead to an equilibrium selection theory: the only
equilibria that are robust to changes in the underlying networks are fuzzy conventions
of the RU -dominant outcome x∗.

Appendix A. Proof of Theorem 1

A.1. Proof of Lemma 1. Define a distance on the space of (mixed) profiles: For any
a, b ∈ [0, 1]N , let

d (a, b) =
√

1∑
g2
i

∑
g2
i (ai − bi)2.

Recall that B = {βa : a is action profile} is the space of neighborhood fractions. For
each δ > 0, let N (δ,B) be the covering number of B, i.e., the smallest cardinality
n of a list of profiles b1, ..., bn ∈ B such that, for each b ∈ B, there is l ≤ n so that
d
(
b, bl

)
≤ δ.

Lemma 2. There exists a universal constant c < ∞ such that, for each δ > 0, and
each network g,

N (δ,B) ≤ exp
( 1
δ2 cw

∗2d (g)N
)
.

Proof. We will use Sudakov’s Minoration Inequality (Theorem 7.4.1 from Vershynin
(2018)), which provides an upper bound on the covering number via the expectation
of a certain Gaussian process. For this, let Zi for each agent i be an i.i.d. standard
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normal random variable. For each (possibly mixed) profile a ∈ A, define

Xa = 1√∑
i g

2
i

∑
i

giaiZi.

For any two profiles a, b ∈ A,
√

E (Xa −Xb)2 =

√√√√ 1∑
g2
i

E

(∑
i

gi (ai − bi)Zi
)2

=
√√√√ 1∑

g2
i

∑
i

gi (ai − bi)2 = d (a, b) .

Given the definition and the above property, Sudakov’s Minoration Inequality implies
that, for some universal constant c1 > 0 (i.e., a constant that is independent of param-
eters and the current problem),

logN (δ,B) ≤ c1
(E supb∈BXb)2

δ2 .

We compute

E sup
b∈B

Xb = E sup
a∈A

Xβa = E

sup
a∈A

1√∑
i g

2
i

∑
i

giZi

(
1
gi

∑
gijaj

)
= 1√∑

i g
2
i

E

sup
a∈A

∑
i

ai

∑
j

gijZj

 ≤ 1√∑
i g

2
i

E
∑
i

∣∣∣∣∣∣
∑
j

gijZj

∣∣∣∣∣∣
≤
√

2
π

1√∑
i g

2
i

∑
i

√∑
j

g2
ij,

where the last inequality is due to a bound on the expectation of the absolute value of
the normal variable ∑ gijZj via its standard deviation σi =

√∑
j g

2
ij. Because

∑
j g

2
ij ≤

d (g) g2
i and (∑i gi)2 ≤ N2w∗2g2

min ≤ Nw∗2
∑
g2
i , we have

logN (δ,B) ≤
√

2
π
c1

1
δ2

1∑
i g

2
i

(∑
i

√
d (g)gi

)2

d (g) ≤ 1
δ2

√
2
π
c1w

∗2d (g)N.

�

We proceed with the proof of Lemma 1. For the first inequality, suppose f is K-
Lipschitz. Fix ε > 0 and δ > 0 so that δ = 1

12K
√
w∗
ε. Find δ-cover b1, ..., bn of B.
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Because n ≤ N (δ,B), Lemma 2 implies that

Prob
(

sup
l≤n

∣∣∣∣∣∑
i

gif
(
τi, b

l
i

)
−
∑
i

gi E f
(
., bli

)∣∣∣∣∣ ≥ 1
2ε
∑

gi

)

≤nBexp
(
−c

(1
2ε
)
N
)
≤ Bexp

(
−
(
c
(1

2ε
)
− 1
δ2 cw

∗2d (g)
)
N
)
.

Assume that the complement of the event in the parantheses of the first line of the
above inequality holds. For each action profile a, find l so that d

(
bl, βa

)
≤ δ. Then,

by the Jensen’s inequality, and because gi∑
gi
≤ w∗

g2
i∑
g2
i
,

∑
i

gi∑
i gi

∣∣∣βai − bli∣∣∣ ≤
√∑ gi∑

gi

(
βai − bli

)2
≤

√√√√∑w∗
g2
i∑
g2
i

(
βai − bli

)2
≤
√
w∗δ.

Hence, ∣∣∣∣∣∑
i

gif (τi, βai )−
∑
i

gi E f (., βai )
∣∣∣∣∣

≤
∣∣∣∣∣∑
i

gif
(
τi, b

l
i

)
−
∑
i

gi E f
(
., bli

)∣∣∣∣∣+ 2K
∣∣∣∣∣∑
i

gi
∣∣∣βai − bli∣∣∣

∣∣∣∣∣
≤
∣∣∣∣∣∑
i

gif
(
τi, b

l
i

)
−
∑
i

gi E f
(
., bli

)∣∣∣∣∣+ 2K
√
w∗δ

(∑
i

gi

)
≤ ε

∑
i

gi.

Take c (ε,K, d) = c
(

1
2ε
)
− 1

ε2 c (6Kw∗)2 d. The claim follows.
For the second inequality, we first derive a version of (4): we show that there exists

constants B < ∞ and c (ε) > 0 such that, for each profile a and measurable function
f (τ, β) ∈ [0, 1],

Prob
∣∣∣∣∣∣
∑
i

gij

 ∏
k=i,j

f (τk, βak)
−∑

i

gij

 ∏
k=i,j

E f (., βak)
∣∣∣∣∣∣ ≥ ε

∑
gi

 ≤ B exp (−c (ε)N) .

(8)
Indeed, suppose that Xi ∈ [−1, 1] is a collection of independent mean zero random
variables. The Hanson-Wright inequality (Theorem 6.2.1 Vershynin (2018)) implies
that there exists a universal constant c > 0 such that, for each t > 0,

P
(∣∣∣∑ gijXiXj − E

∑
gijXiXj

∣∣∣ ≥ t
)
≤ 2 exp

(
−cmin

(
t2

‖G‖2
F

,
t

‖G‖

))
. (9)
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where G = [gij] is the adjacency matrix, ‖G‖F is the Frobenius norm and ‖G‖ is the
operator L2-norm. Let Xi = f (τi, βai )− E f (., βai ) and t = εi

∑
gi. Recall that Xi are

independent and that gij = gji and gii = 0 to obtain∑
gijXiXj − E

∑
gijXiXj =

∑
gijXiXj

=
∑

gij

 ∏
k=i,j

f (τk, βak)
−∑

i

gij

 ∏
k=i,j

E f (., βak)


− 2
∑

gi
(
E f

(
., βaj

))
(f (τi, βai )− E f (., βai )) .

Hence,

Prob
∣∣∣∣∣∣
∑
i

gij

 ∏
k=i,j

f (τk, βak)
−∑

i

gij

 ∏
k=i,j

E f (., βak)
∣∣∣∣∣∣ ≥ ε

∑
gi


≤Prob

(∣∣∣∑ gijXiXj − E
∑

gijXiXj

∣∣∣ ≥ 1
2ε
∑

gi

)
+ Prob

(∣∣∣∑ gi
(
E f

(
., βaj

))
(f (τi, βai )− E f (., βai ))

∣∣∣ ≥ 1
4ε
∑

gi

)
.

We apply (9) to the first bound (notice that ‖G‖ ≤ ‖G‖F ≤
√
N ‖G‖ and gmin ≤

‖G‖ ≤ w∗gmin, where gmin = mini gi) and Hoeffding’s inequality (4) to the second
bound to obtain

≤2 exp
(
−cmin

(
ε2 (∑ gi)2

Nw∗2g2
min

, ε

∑
gi

w∗gmin

))
+Bexp

(
−c

(1
4ε
)
N
)

≤2 exp
(
−c 1

w∗2
ε2N

)
+Bexp

(
−c

(1
4ε
)
N
)
.

This concludes the proof of (8).
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Given (8), we conclude the proof of the second inequality of Lemma 1 in the same
manner as in the case of the first inequality. In particular, if d

(
bl, βa

)
≤ δ,∣∣∣∣∣∣

∑
gij

 ∏
k=i,j

f (τk, βak)−
∏
k=i,j

f
(
ak, b

l
k

)∣∣∣∣∣∣
≤
∑

gijf (τi, βai )
∣∣∣f (τj, βaj )− f (τk, blj)∣∣∣+∑

gijf
(
τj, b

l
j

) ∣∣∣f (τi, βai )− f
(
τi, b

l
i

)∣∣∣
≤K

∑
j

(∑
i

gijf (τi, βai )
) ∣∣∣βaj − blj∣∣∣+∑

i

∑
j

gijf
(
τj, b

l
j

) ∣∣∣βai − bli∣∣∣


≤2K
∑
i

gi
∣∣∣βai − bli∣∣∣ ≤ 2K

√
w∗δ

∑
i

gi ≤
1
2ε
∑
i

gi.

Similar calculations apply to ∑i gij
(∏

k=i,j E f (., βak)
)
. Hence, if

sup
l≤n

∣∣∣∣∣∣
∑
i

gij
∏
k=i,j

f
(
τk, b

l
k

)
−
∑
i

gij E
∏
k=i,j

f
(
., blk

)∣∣∣∣∣∣ ≥ 1
2ε
∑

gi, for each l

then ∣∣∣∣∣∣
∑
i

gij

 ∏
k=i,j

f (τk, βak)
−∑

i

gij

 ∏
k=i,j

E f (., βak)
∣∣∣∣∣∣ ≤ ε

∑
i

gi.

The rest of the argument follows.

A.2. Proof of Theorem 1. Fix η > 0. For each δ > 0, let ν0
δ = maxx:|x−x∗|≤δ (ν (x∗)− ν (x))

and let ν1
δ = minx:|x−x∗|≥δ (ν (x∗)− ν (x)). Because x∗ is the unique maximizer of ν (.),

ν1
δ > 0 for each δ. Moreover, limδ→0 ν

0
δ > 0.

Let κ > 0 and define 1
κ
-Lipshitz functions:

1− (τ, β) = max
(

0,min
(

1, 1
κ

(β − τ)
))

,

1+ (τ, β) = max
(

0,min
(

1, 1 + 1
κ

(β − τ)
))

.

Then, 1 (τ ≤ β − κ) ≤ 1− (τ, β) ≤ 1 (τ ≤ β) ≤ 1+ (τ, β) ≤ 1 (τ ≤ β + κ).
For any any equilibirum profile ai = 1 (τ ≤ βai ), we have

V (a; τ) ≤1
2
∑

gij1+ (τi, βai ) 1+
(
τj, β

a
j

)
−
∑

gi1− (τi, βai ) τi.
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An application of probabilistic bounds (4) and (8) shows that, if N is sufficiently large,
then, with a probability of at least 1− ε,

V (a∗; τ) ≥1
2
∑

gijP (x∗ − κ)P (x∗ − κ)−
∑

gi

ˆ x∗+κ

0
ydP (y)− ε

∑
gi

=
∑

gi (ν (x∗ − κ)− ε− 2κ)

≥
∑

gi (ν (x∗))− κNw∗gminν
0
κ − (ε+ 2κ)Nw∗gmin,

where in the last inequality, we use constants ν0
. .

Because E 1− (., b) ≥ P (b− κ) and E 1+ (., b) ≤ P (b+ κ), an application of Lemma
1 shows that, for each ε > 0, there is d > 0 small enough such that if d (g) < d

(hence N is sufficiently large), then with probability of at least 1− ε, we have for each
equilibrium profile a,

V (a; τ) ≤1
2
∑

gijP (βai + κ)P
(
βaj + κ

)
−
∑

gi

ˆ bi−κ

0
ydP (y) + ε

∑
gi

≤1
2
∑

gi (P (βai + κ))2 −
∑

gi

ˆ bi−κ

0
ydP (y) + ε

∑
gi

=
∑

gi (ν (βai + κ) + ε+ 2κ) .

If an equilibrium profile a = 1 (τi ≤ βai ) is not an η-fuzzy convention, then we get

V (a; τ) ≤
∑

gi (ν (x∗)) +Nw∗gmin (ε+ 2κ)− ηNgminν
1
1
2η

,where we used the definition of constants ν1
. . If κ and ε ≤ 1

2η (and d (g)) are sufficiently
small, V (a; τ) < V (a∗; τ) with probability of at least 1 − 2ε ≥ 1 − η. In such a case,
the potential maximizer must be an η-fuzzy convention x∗.

Appendix B. Proof of Theorem 2

In part B.1 of this Appendix, we formally define the city network (M,m) and also
develop some of its properties. Part B.2 contains the probabilistic part of the proof:
We establish the existence of a large connected component of the network that is also
obstacle-free, i.e., without “bad” groups of agents. The last part elaborates on the
contagion argument from the main body of the paper to conclude the proof of the
Theorem.
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B.1. Lattice. We start by formally defining the city network. For each M ≥ m, the
(M,m)-lattice is a network with

• N = M2 nodes from the set IM = {1, ...,M}2. We define a distance on IM by

d (i, j) = 1
m

√∑
l

((il − jl) mod M)2,

and a ball in this metric asB (i, r) = {y : d (x, y) ≤ r} . The subtraction “modM”
turns the lattice into a subset of “discrete Euclidean torus”

[
0, M

m

]2
,

• connections gi,j = 1⇐⇒ j ∈ B (i, 1).
For each i ∈ IM , and two sets U,W ⊆ IM , let

d (i,W ) = min
j∈W

d (i, j) and d (U,W ) = min
i∈U

min
j∈W

d (i, j) . (10)

For each set W , and each r, define the r-neighborhood of W :

B (W, r) = {i : d (i,W ) ≤ r} =
⋃
i∈W

B (i, r) .

B.1.1. Large m approximations. For large m, the neighborhoods of each agent have
similar properties as open balls on a Euclidean plane. This is formalized as follows.
Let BR2 (x, r) be the ball on the plane with center x ∈ R2 and radius r. Let |A| be a
Lebesgue measure of a measurable set A ⊆ R2. Let

f0 (d, r1, r2) = 1
π
|BR2 ((0, 0) , r1) ∩BR2 ((d, 0) , r2)|

be the mass of the intersection of two balls, with radii r1 and r2 respectively, separated
by distance d, and normalized by the mass of the unit ball B ((0, 0) , 1).

Lemma 3. (1) For each ρ > 0, there exists Cρ <∞ such that if m ≥ Cρ, then for
any two agents i, j, for any r1 ≤ 1 ≤ r2, we have∣∣∣∣∣ |B (i, r1) ∩B (j, r2)|

|B (i, 1)| − f0 (d (i, j) , r1, r2)
∣∣∣∣∣ ≤ ρ.

(2) Function f0 has the following properties:
• f0 is Lipschitz over d and r1 ≤ 1 ≤ r2,
• f0 is decreasing in d, and
• f0 (d, r1, r2) = 0 if r1+r2 ≤ d, and f0 (d, r1, r2) = 1 if r1 = 1 and d ≤ r2−r1.

(3) Functions f1 (x, r1; r2) = f0 (r2 − x, r1, r2) for r1 ≤ 1 and x ∈ R converge uni-
formly to function limr2→∞ f1 (x, r1; r2) = f2 (x, r1). In particular, for each
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r1

r2−x

f1(−x, r1, r2)

f(x)
x 1

Figure 5. Illustrations of functions f1 and f .

ρ > 0, there exists Rρ such that, if r1 ≤ 1 and r2 ≥ Rρ, then,

sup
r1≤1,x

|f2 (x, r1)− f1 (x, r1; r2)| ≤ ρ.

Functions f1 and f2 are Lipschitz over d and r1 ≤ 1 and increasing in x.
(4) Let f (x) = f2 (x, 1). Then, f (x) + f (−x) = 1.

Proof. The properties of f0, f1, f2, and f follow from their geometric interpretations
and from the fact that the counting measure on IM converges weakly to the Lebesgue
measure on the torus. For example, f2 (x, r1) is a segment of radius r1 ball with height
equal to r1 + x for x ∈ (−r1, r1). See Figure 5. �

B.1.2. Cubes. let G be a (M,m)-lattice. We divide the lattice into disjoint areas that
we refer to as cubes. We will assume there exists values b such that 0 � b � m,
and M is divisible by b. (This divisibility assumption simplifies the proof. The the-
orem remains valid without it, but the proof requires small modifications due to the
existence of non-zero reminders from the division by b. We omit the details.) Each
cube has b2 elements and, because b� m, it is much smaller than the diameter of the
neighborhood of each node so that the neighborhoods of nodes in the same cube are
largely overlapping. At the same time, each cube contains a sufficiently large number
of nodes so that the distribution of thresholds within the cube can be probabilistically
approximated by its expected distribution.
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Formally, for each real number x, let bxc be the largest integer no larger than x. For
each node i, the set of nodes

cb (i) =
{
j ∈ {1, ...,M}2 : ∀l bil/bc = bjl/bc

}
is referred to as a cube that contains i. Any two cubes are either disjoint or identical.
Each cube c is uniquely identified by a pair of numbers cl = bil/bc for each l = 1, 2 and
any i ∈ c. Due to the divisibility assumption, there are

(
M
b

)2
cubes on the (M,m)-

lattice.
Let Gb =

{
cb (i) : i ∈ G

}
be the set of all cubes. We refer to the elements of Gb as

cubes. The network of cubes Gb consists of cubes as vertices and edges between any
two cubes that share one of their sides: for any c, c′ ∈ Gb, gbc,c′ = 1 iff for some l = 1, 2,
cl = c′l and

∣∣∣(c−l − c′−l) mod M
b

∣∣∣ = 1. Thus, each cube shares an edge with four other
cubes.

Say that set S ⊆ Gb is r-connected if for any subset A ⊆ S,A 6= S, there is c ∈ A,
c′ ∈ S\A, and at most an r-element path between c and c′. (A path is a tuple of cubes
connected by the edges of the cube network.) S is connected if it is 1-connected.

For any two cubes, define a distance db (c, c′) = maxl
∣∣∣(cl − c′l)modM

b

∣∣∣. For any
S, S ′ ⊆ Gb, let db (S, S ′) = minc∈S,c′∈S′ db (c, c′) be the distance between two sets of
cubes. Let U (c, r) = {c′ : d (c, c′) ≤ r} be the r-neighborhood of c. Thus, each cube
has 8 other cubes in its 1-neighborhood.

B.2. Probabilistic part. We will show that if the lattice is sufficiently large then,
with arbitrarily high probability, we can find a set W of cubes that (a) contains almost
all cubes and (b) is connected in the cube network, where (c) each cube in the set
is far away from bad cubes, and (d) contains a large set of agents for whom action
0 is dominant. Properties (b)-(c) will allow the contagion wave to spread across the
entire set W , property (a) will ensure that spreading to set W means spreading almost
everywhere, and property (d) will ensure that the set contains sufficiently many “initial
infectors” to start the contagion wave.

For each realization of threshold profile τ , define the empirical cdf of best response
thresholds in cube c ∈ Gb:

Pc (x|τ) = 1
|c|
∑
i∈c

1 {τ i < x} .



FUZZY CONVENTIONS 27

For γ > 0, say that a cube c is γ-bad if there exists x such that Pc (x|τ) > P (x) + γ;
otherwise, the cube is γ-good.

Agent x is extraordinary if action 0 is strictly dominant for such an agent. A cube
c ∈ Gb is extraordinary if it only consists of extraordinary agents. In any equilibrium,
a (c) = 0 for extraordinary cube c. Clearly, an extraordinary cube is γ-good for each
γ ≥ 0.

Say that set W ⊆ Gb of cubes is (γ,R)-good if

(a) W contains at least a fraction (1− γ) of cubes, |W | ≥ (1− γ)
∣∣∣Gb∣∣∣,

(b) W is connected as a subset of the cube network,
(c) if c ∈ Gb is γ-bad, then db (c, c′) > 3R for each c′ ∈ W (in particular, each cube

in W is γ-good), and
(d) W contains a cube c0 such that each cube c s.t. d (c, c0) ≤ R is extraordinary.

We show that large good sets of cubes exist with high probability:

Lemma 4. For each γ, ρ > 0, and R < ∞, there exist mγ,ρ,R > 0, and for each
m > mγ,ρ,R, there exists Mγ,ρ,R (m) such that, if m ≥ mγ,ρ,R and M ≥ Mγ,ρ,R (m),
then, if G is an (M,m)-lattice, b = bρmc, and Gb is the associated cube network, then

P
(
there exists (γ,R) -good set W ⊆ Gb

)
≥ 1− γ.

B.2.1. Intermediate results. We need two intermediate results. The first result provides
a bound on the size of the largest connected component of the graph obtained from
the network of cubes after removing a group of smaller and connected sets of cubes.

Lemma 5. Suppose that {S1, ..., SJ} is a collection of connected subsets of Gb such
that Si ∪ Sj are not 2-connected for any i 6= j. Then, there is a connected subset
V ⊆ Gb\⋃Sj such that

∣∣∣Gb\V ∣∣∣ ≤ ∑j |Sj|
2.

Proof. First, observe that for each connected set S such that |S|2 <
∣∣∣Gb∣∣∣, there is a set

S ′ and a loop (i.e., a path with the same beginning and ending) cS0 , ..., cSn = c0 of cubes
cSl /∈ S ′ such that

• S ′ ⊇ S and|S ′| ≤ |S|2, and
• loop cS0 , ..., c

S
n tightly surrounds set S ′ and separates it from the rest of the

graph: |{c : d (c, S ′) = 1}| ⊆
{
cSl
}
⊆ |{c : d (c, S ′) ≤ 2}|.
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This observation follows from the Jordan Curve Theorem and from the fact that each
connected set S such that |S|2 <

∣∣∣Gb∣∣∣ can be contained in a |S ′2|-element “square” of
cubes such that the set outside the square is connected.

For each set Si from the hypothesis of the Lemma, find loop ci and set S ′i as in the
observation above. We will show that set Gb\⋃S ′j is connected, which will conclude
the proof of the Lemma. Take any two cubes c, c′ ∈ Gb\⋃S ′j and an arbitrary path
c = c0, ..., cn = c′ between them. We will modify this path so that it avoids each
set Si. For each i, either the existing path avoids set S ′i, or it intersects it. Find
li0 = min {l : d (cl, Si) = 1} and li1 = max {l : d (cl, Si) = 1}. Then, replace the interval
cli0 , ..., cli1 of the path with the path from cli0 to cli0 along path ci. The new path
avoids set S ′i. Because the modified part of the path stays within 2-distance of set S ′i,
the modification does not create new intersections with other sets S ′j. After possibly
modifying the path for any i, we obtain a path between c and c′ that avoids each set
S ′i. Thus, set Gb\

⋃
S ′j is connected. �

The second result provides an upper bound on the number of different r-connected
sets of cubes.

Lemma 6. The number of r-connected sets in Gb of cardinality n is not larger than
22n (2r + 1)n |Gb|.

Proof. We first find an encoding for each r-connected tuple. Let mr be the size of
the r-neighborhood of an element of Gb. Then, mr ≤ (2r + 1)2. Consider tuples
(s1, (l2, ..., ln) , (k2, ..., kn)) such that s1 ∈ Gb, ki ∈ {1, ..,mr}, and li ≤ i and li ≤ lj for
each 2 ≤ i ≤ j.

We show that each r-connected set can be encoded as one of the above tuples
in such a way that any two different r-connected sets must have a different encod-
ing. Let e : Gb →

{
1, ...,

∣∣∣Gb∣∣∣} be an enumeration of set Gb. For each s ∈ Gb,let
es : {s′ : d (s, s′) = 1} → {1, ..., 4} be the enumeration of the immediate neighbor-
hood of s that has the same ranking in the neighborhood as enumeration e. Choose
s1 = arg mins∈S e (s). Suppose that s1, ...si−1 are chosen for 1 < i < n. For each
x ∈ S\ {s1, ..., si−1}, let l (x) = mind(x,sl)=1 l and let it equal∞ if the set is empty. Then,
l (x) < i for at least one x. Let k (x) = esl(x) (x). Choose si = arg minlexicograpically,x∈S (l (x) , k (x)),
so as to minimize lexicographically (l (x) , k (x)) among all x ∈ S\ {s1, ..., si−1}. Let
li = l (si) and ki = k (si).
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We derive an upper bound on the number of encoding tuples. Say that a sequence
li, ..., ln is (i,m)-sequence if it is increasing, lj < j for each j, and li = i−m− 1. Let
S (i,m) denote the number of different (i,m)-sequences. It is easy to see that

S (i,m) =
m+1∑
p=0

S (i+ 1, p) ,

where S (n,m) = 1. We check by induction on i that S (i, n) ≤ 22(n−i)+m.
The number of choices for s1 is not larger than |Gb|. By the above, the number of

(2, 0)-sequences is not larger than 22(n−2). The number of choices of k2, ..., kn is not
larger than (2r + 1)n−1. It follows that the total number of encodings, and hence the
number of connected sets, is not larger than 22n (2r + 1)n |Gb|. �

B.2.2. Proof of Lemma 4. Lemma 4 follows from the following two results. The first
result establishes the existence of a large connected component that is far from bad
cubes. Let Bγ =

{
c ∈ Gb : c is γ-bad

}
be the (random) set of γ-bad cubes.

Lemma 7. For each γ > 0 and R < ∞, there exists bγ,R > 0 such that if b > bγ,R,
then

P
(
∃W 0 ⊆ Gb, st. W 0 is connected,

∣∣∣W 0
∣∣∣ ≥ (1− γ)

∣∣∣Gb∣∣∣ , db (W 0, Bγ

)
≥ 5R

)
≥ 1−1

4γ.

Proof. Let pγ > 0 be the probability that a cube is γ-bad. Due to the Dvoretzky–
Kiefer–Wolfowitz–Massart inequality, the probability that a cube c is γ-bad is bounded
by

pγ ≤ Ce−2b2γ2

for some universal constant C.
Let S0

1 , ..., S
0
n be the smallest division of the set of bad cubes Bγ = ⋃

S0
i into sets

that are 11R-connected and such that S0
i ∪ S0

j are not 11R-connected for i 6= j. Let
X = ∑ |S0

i |
2. We compute the expected value of X. Let mn = (22n (11R + 1)n |Gb|) be

an upper bound on the cardinality of all 11R-connected sets (obtained from Lemma
6). Then,

EX ≤
∑
n≥1

n2mnp
n
γ ≤ |Gb|

∑
n≥1

2n22n (6R + 1)n pnγ

= |Gb|
8 (11R + 1) pγ

1− 8 (11R + 1) pγ
.
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Let S1
i ⊇ S0

i be the smallest connected set such that sets S1
i ∪ S1

j are not 11R-
connected for i 6= j and such that |S1

i | ≤ 11R |S0
i |. Such sets can be constructed by

connecting elements of S0
i by a path inside the intersection of the 11R-neighborhood

of the two sets.
Let Si be the 5R-neighborhood of set S1

i . Clearly, sets Si are disjoint (and separated
by R). Because each 5R-neighborhood of an element of a set S1

i has no more than
(11R + 1)2 |S1

i | cubes, the cardinality of Si is at most (11R + 1)2 |S1
i | ≤ (11R + 1)3 |S0

i |.
Let W 0 be the largest connected component of Gb that does not contain elements of

sets Si. By construction, each set Si is connected, but sets Si∪Sj are not 2-connected.
By Lemma 5, the cardinality of W 0 is at least

∣∣∣Gb∣∣∣− 4 (11R + 1)6 X. By the Markov’s
inequality,

P
(∣∣∣W 0

∣∣∣ ≥ (1− γ)
∣∣∣Gb∣∣∣) ≤P

(
4 (11R + 1)6 X ≤ γ

∣∣∣Gb∣∣∣)
≤4 (11R + 1)6 EX

γ |Gb|
≤ 1
γ

32 (11R + 1)7 pγ
1− 8 (11R + 1) pγ

.

Assume that bγ,R > 0 is large enough so that for each b > bγ,R, 1
γ

32(11R+1)7Ce−2b2γ2

1−8(11R+1)Ce−2b2γ2 ≤
1
4γ. �

Say that cube c ∈ GR is an extraordinary center if all cubes in U (c, R) are extraor-
dinary.

Lemma 8. There exists Kγ,R < 0 large enough so that if M
b
> Kγ,R, then

P

∃W ⊆ Gb, st. W ⊇ W 0, W is connected, db (W,Bγ) ≥ 3R
and W contains an extraordinary center

 ≥ 1− γ,

where W0 inside the probability satisfied the conditions from Lemma 7.

Proof. Recall that K = M
b

is the number of cubes. If K is divisible by (2R + 1),
we can find a grid of cubes GR ⊆ Gb such that any two c, c′ ∈ G, d (c, c′) = 2R
and Gb = ⋃

c∈GR U (c, R). Because the U (c, R) neighborhoods are disjoint,
∣∣∣Gb∣∣∣ =

|GR| (2R + 1)2, where (2R + 1)2 is the size of each neighborhood. For simplicity, the
rest of the arguments rely on the divisibility assumption. The argument is easily
modified for the case when the divisibility does not hold (and b and M

b
are sufficiently

large).
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Let W 0 be the (random) set from Lemma 7. Let W 1 = ⋃
c U (c, R + 1) and W =⋃

c U (c, 2R + 1). Then, d (W,Bγ) > 2R. Because for each c′ ∈ U (c, r) there is a path
between c and c′ that is inside set U (c, r), W is connected.

We show that |GR ∩W 1| ≥ (1− γ) |GR|. On the contrary, suppose that |GR\W 1|>γ |GR|.
Then, A = ⋃

c∈GR\W U (c, R) ⊆ Gb\W 0. Moreover, |A| > γ |GR| (2R + 1)2 = γ
∣∣∣Gb∣∣∣.

However, this contradicts
∣∣∣Gb\W 0

∣∣∣ ≤ γ
∣∣∣Gb∣∣∣.

Let q > 0 be the probability that a cube c is an extraordinary center. Then,
q ≥ P (0)(2R+1)2b2

. Let q∗ be the probability that cube c is an extraordinary cen-
ter, conditional on c ∈ W 1. Because being in c ∈ W 1 provides no other information
about the distribution of taste shocks apart from c is not γ-bad and γ-bad cubes are
not extraordinary, it must be that q∗ ≥ q. Similarly, conditional on c, c′ ∈ W 1, if c
and c′ are separated by 2R + 1, the events that the two are extraordinary centers are
independent. Hence, the probability that none of the cubes in c ∈ GR ∩ W1 is an
extraordinary center is at most

(1− q∗)|GR∩W
1| ≤

(
1− P (0)(2R+1)2b2

)(1−γ)K2(2R+1)−2

≤ e−(1−γ)Kγ,R(2R+1)−2P (0)(2R+1)2b2

.

If K is sufficiently large, the above is smaller than 1
4γ. �

To conclude the proof of the Lemma, we set mγ,ρ,R >
1
ρ
bγ,R and then Mγ,ρ,R (m) ≥

ρmKγ,R.

B.3. Proof of Theorem 2. Below, we will show the following Lemma.

Lemma 9. For each ε > 0, there exists sufficiently small γ, ρ > 0 and sufficiently large
R > 0 so that if b = bρmc, W is a (γ,R)-good set in the network of cubes Gb, and a is
an equilibrium profile, then for each i ∈ c ∈ W , βai ≤ x∗ + ε.

Together with Lemma 4, Lemma 9 shows that for each ε > 0, if m and M
m

are
sufficiently large, with probability of at least 1 − ε, if a is an equilibrium profile,
then all but a ε-fraction of the population (i.e., all members of the “good” set W ),
βai ≤ x∗ + ε.

A similar argument shows that βai ≥ x∗ − ε for elements of an analogously defined
“good” set (with the appropriate modification of what good and extraordinary cubes
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are). Together, the two arguments show that, with probability of at least 1− 2ε, a is
a 2ε-fuzzy convention of x∗. Take ε = 1

2η.

Proof. We divide the proof of the Lemma into two steps.
Preparation. Find ε0 > 0, such that

σ∗ = max
a≥x∗+ ε

2

aˆ

x∗+ε0

(
P−1 (y)− y

)
dy > 0.

The existence of such ε0 ∈
(
0, ε2

)
comes from the definition of x∗ as the unique maxi-

mizer of
´ a
x∗

(y − P−1 (y)) dy. Let δρ be a fraction of neighbors of i who are not members
of a cube that is fully contained in the neighborhood of i. It is easy to see that δρ → 0
as ρ→ 0.

Let a be an equilibrium profile. For each cube c, define

ac = 1
|c|
∑
j∈c

aj and βc = 1
|c|
∑
j∈c

βaj .

Then, |βc − βai | ≤ δρ, and

βc ≤ δρ + |c|
|B (i, 1)|

∑
c⊆B(i,1)

ac. (11)

If cube c is γ-good, then

ac = 1
|c|
∑
i∈c

1 {τ i < βai } ≤
1
|c|
∑
i∈c

1 {τ i < βc + δρ} ≤ P (βc + δρ) + γ. (12)

From now on, assume that W ⊆ Gb is (γ,R)-good. If db (c,W ) ≤ 3R, then cube c is
γ-good.

Define
C0 = {c : ∀c′ d (c, c′) ≤ R =⇒ ac ≤ x∗ + ε0} .

For each i ∈ C0, the average behavior in all the cubes fully contained in the neighbor-
hood of i is ≤ x∗ + ε0, which, together with (11), implies that

βai ≤ (x∗ + ε0) (1− δρ) + δρ ≤ x∗ + ε.

The last inequality holds when ρ is sufficiently small so that δρ ≤ ε
2 . Hence, to establish

our claim, it is enough to show that W ⊆ C0.
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Notice that C0 cannot be empty as it contains at least one extraordinary cube. For
each a > x∗ + ε

2 , define
d (a) = min

c∈W :ac≥a
db (c, C0) ≥ R,

where the value is ∞ if the set over which the distance is miminized is empty.
On the contrary to our claim, suppose that there is a cube c ∈ W0 such that ac >

a > x∗+ ε
2 . Then, there exists a > x∗+ ε

2 such that d (a) <∞. Find a∗ ≥ x∗+ ε0 such
that d (a∗) ≤ 2R and d

(
a∗ + 1

R

)
≥ d (a∗) + 1. Such a∗ exists: otherwise, if for each a

such that d (a) ≤ 2R, d
(
a+ 1

R

)
≤ d (a) + 1, then d (a+ 1) ≤ 2R, which is impossible

(as there is no cube with the action average strictly larger than 1).
Contagion wave. Notice that ac takes discrete values a ∈ A =

{
0, 1
|c| , ..., 1

}
, where

|c| is the size of a cube. Let ak = k
|c| be the enumeration of set A ∩

{
a : a ≥ x∗ + ε

2

}
.

For each such cube c, and each i ∈ c, (11) implies

βc ≤δρ + |c|
|B (i, 1)|

∑
c⊆B(i,1)

ac

≤δρ +
∑
a∈A

a
|{c ⊆ B (i, 1) : ac = a}|

|B (i, 1)| /c

≤δρ + x∗ + ε0 +
∑
k

(ak+1 − ak)
|{c ⊆ B (i, 1) : ac ≥ a}|

|B (i, 1)| /c

≤δρ + δR,ρ + x∗ + ε0 +
∑
k

(ak+1 − ak)
(
1− f

(
d (ak)− db (c, C0)

))
,

where the third inequality is a consequence of a discrete version of the integration by
parts (i.e.,∑xi (yi − yi+1) = ∑ (xi+1 − xi) yi+1), and the fourth one is due to Lemma 3,
where δR,ρ → 0 as R is sufficiently large and ρ is sufficiently small. Let δ1

R,ρ = δρ+ δR,ρ.
Additionally, for each al ∈ A, al ≤ a∗, find a cube c such that db (c, C0) = dR (al) <

2R and ac ≥ al. Using the above inequality and (12), we obtain

P−1 (al − γ) ≤ P−1 (ac − γ) ≤ βc + δρ

≤δ1
R,ρ + x∗ + ε0 +

∑
k

(ak+1 − ak) (1− f (d (ak)− d (al))) .
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Let k∗ = max {k : ak ≤ a∗}. Then, the right-hand side is not larger than

≤δ1
R,ρ + x∗ + ε0 +

∑
k≤k∗

(ak+1 − ak) (1− f (d (ak)− d (al)))

+
∑

k>k∗:ak≤a∗+ ε
10

(ak+1 − ak) (1− f (d (ak)− d (al)))

+
∑

k:ak>a∗+ ε
10

(ak+1 − ak) (1− f (d (ak)− d (al)))

≤δ1
R,ρ + x∗ + ε0 + 1

R
+
∑
k≤k∗

(ak+1 − ak) (1− f (d (ak)− d (al))) ,

due to the second term in the first line being not larger than ε
10 , and the third term

being equal to 0 (as f (d (ak)− d (al)) ≥ f (1) = 1).
Let ∆ = a∗ − (x∗ + ε0). Multiplying by (al+1 − al) and summing across l ≤ k∗, we

obtain∑
l≤K∗

P−1 (al − γ) (al+1 − al)

≤
(
δ1
R,ρ+ 1

R
+ x∗

)
∆ +

∑
l≤K∗

∑
k≤K∗

(ak+1 − ak) (al+1 − al) (1− f (dR (al)− dR (ak)))

=
(
δ1
R,ρ + 1

R
+ x∗

)
∆ + 1

2
∑

l,k≤K∗
(ak+1 − ak) (al+1 − al) =

(
δ1
R,ρ + 1

R
+ x∗ + ε0

)
∆ + 1

2∆2

≤δ1
R,ρ + 1

R
+

a∗ˆ

x∗+ε0

ydy.

To obtain the equality, we use the fact that f is balanced.
Because P−1 (.− γ) ∈ [0, 1] and al+1 − al = 1

|c| , the left-hand side of the above
inequality is smaller than

a∗ˆ

x∗+ε0

P−1
(
y − γ − 1

|c|

)
dy ≥

a∗−γ− 1
|c|ˆ

x∗+ε0−γ− 1
|c|

P−1 (y) dy
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Assuming that b is large enough so that 1
|c| ≤ γ, the above is not smaller than´ a∗

x∗+ε0
(P−1 (y)− y) dy − 2γ. Putting it back into the main inequality, we obtain

a∗ˆ

x∗+ε0

(
P−1 (y)− y

)
dy ≤ δ1

R,ρ + 1
R

+ 2γ.

If γ, ρ > 0 are sufficiently small and R sufficiently large, δ1
R,ρ + 1

R
+ 2γ < σ∗. The

contradiction shows that W ⊆ C0, which concludes the proof of the Lemma. �

Appendix C. Proof of Theorem 3

For each η > 0, define Pη = P (x : |x− x∗| ≤ η) as the probability that the threshold
realization is within η of x∗. If P does not have an atom at x∗, then, we can choose ηδ
such that Pηδ ≤ 1

30δ. Assume w.l.o.g. that ηδ ≤ δ. Let

Tδ =
{
τ : 1

N
|{τi : |τi − x∗| ≤ ηδ}| ≤

1
3δ
}
.

The Law of Large Numbers implies that for sufficiently high N , Prob (Tδ) ≥ 1− δ.
Fix threshold profile τ ∈ Tδ. Let I0 = {i : |τi − x∗| ≤ ηδ}. Suppose that a is 1

3ηδ-
fuzzy convention x∗. Let I (g) =

{
i : |βai − x∗| > 1

3ηδ
}
be the set of agents that is an

equilibrium in game G (g, τ). Let I = I0 ∩ I (g). Then, 1
N
|I| ≤ 2

3δ. For each i /∈ I,
either

• τi > x∗ + ηδ and βai ≤ x∗ + 1
3ηδ, which implies ai = a∗i = 0, or

– τi < x∗ − ηδ and βai ≥ x∗ − 1
3ηδ, which implies ai = a∗i = 1.

Hence, for any i /∈ I, ai = a∗i . This concludes the proof of the Theorem.
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